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Abstract
In multi-label classification, it is critical to capi-
talize on complicated data structures and seman-
tic relationships. Metric learning serves as an ef-
fective strategy to provide a better measurement of
distances between examples. Existing works on
metric learning for multi-label classification mainly
learn one single global metric that characterizes
latent semantic similarity between multi-label in-
stances. However, such single-semantics metric
exploitation approaches can not capture the in-
trinsic properties of multi-label data possessed of
rich semantics. In this paper, the first attempt to-
wards multi-semantics metric learning for multi-
label classification is investigated. Specifically, the
proposed LIMIC approach simultaneously learns
one global and multiple label-specific local metrics
by exploiting label-specific side information. The
global metric is learned to capture the commonal-
ity across all the labels and label-specific local met-
rics characterize the individuality of each seman-
tic space. The combination of global metric and
label-specific local metrics is utilized to construct
latent semantic space for each label, in which simi-
lar intra-class instances are pushed closer and inter-
class instances are pulled apart. Furthermore, a
metric-based label correlation regularization is con-
structed to maintain similarity between correlated
label spaces. Extensive experiments on benchmark
multi-label data sets validate the superiority of our
proposed approach in learning effective distance
metrics for multi-label classification.

1 Introduction
Multi-label classification deals with the problem where an in-
stance can be associated with multiple labels simultaneously
[Zhang and Zhou, 2014; Liu et al., 2021]. As a practical
learning paradigm involving instances with multiple seman-
tics, multi-label classification has been widely driven by real-
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world applications, such as multimedia annotation [You et al.,
2020], text categorization [Tang et al., 2020], bioinformatics
analysis [Chen et al., 2017], information retrieval [Gopal and
Yang, 2010], and so on.

Similarity elucidates the closeness of connections between
instances and is usually reflected by their distances. The pre-
defined distance measurement between instances, e.g. Eu-
clidean distance, is difficult to be adapted for all scenarios
[Bellet et al., 2015]. Therefore, metric learning [Xing et
al., 2002; Shental et al., 2002; Goldberger et al., 2004] was
proposed to take advantage of side information like linkages
and comparisons between instances. It automatically learns
better distance measurement than the Euclidean one, with
which the distance between a pair of instances is consistent
with their given relationship, i.e. similar intra-class instances
are close to each other, and the distances between dissim-
ilar inter-class instances are large enough. With an adap-
tively learned distance measurement, the superiority of metric
learning has been verified on single-label data for improving
similarity/distance-based classification models [Davis et al.,
2007; Weinberger and Saul, 2009; Schroff et al., 2015]. Un-
der the single-label scenario, semantic similarity/dissimilarity
is easily available by considering whether two instances have
the same label. Nevertheless, in the multi-label scenario, it
is impractical to measure semantic similarity/dissimilarity by
considering each label as an equivalent contribution due to
the complicated semantics of multi-label data. As a result, it
is much more difficult to learn appropriate metrics to char-
acterize the latent semantic similarity/dissimilarity between
multi-label data than single-label ones.

In view of the powerful representation capability of latent
semantic space, metric learning has been applied to multi-
label classification in recent years [Liu and Tsang, 2015;
Gouk et al., 2016; Sun and Zhang, 2021], a.k.a. multi-label
metric learning, for characterizing more complicated seman-
tic similarity between multi-semantics instances. Existing
multi-label metric learning approaches have focused on fus-
ing multi-semantic label information to construct a common
distance measurement across all the labels, and then learn one
single global metric to characterize the underlying semantic
similarity/dissimilarity. Nevertheless, such single-semantics
metric exploitation strategies are not consistent with the in-
trinsic properties of multi-label data possessed of rich seman-
tics. To capitalize on the inherent multi-semantic properties



of multi-label data, it is reasonable and important to consider
multiple label-specific distance measurements to demonstrate
data structures and relationships when constructing latent la-
bel semantic space.

Based on the above observations, this paper presents the
first attempt towards multi-semantics metric learning for
multi-label classification. A novel approach named LIMIC,
i.e. Label SpecIcs Multi-SemantIcs MetriC Learning for
Multi-Label Classification, is proposed accordingly. Differ-
ent from existing multi-label metric learning approaches con-
sidering only one single global metric, LIMIC learns mul-
tiple label-specific semantic metrics on the shoulder of the
global one. The global metric plays a fundamental role in
LIMIC, which considers the side information generated across
all the labels to reveal the common characteristics of multi-
label data, while each label-specific local metric is a local
bias, which depicts the individuality of the corresponding se-
mantic space. In this way, the relationship between instances
w.r.t each specific label can be measured in the latent semantic
space formed by the combination of the global metric and the
corresponding label-specific local metric. To take label corre-
lation into consideration, a metric-based label correlation reg-
ularization is further introduced based on label co-occurrence
to maintain consistency between correlated label spaces. Ex-
tensive experiments on benchmark multi-label data sets val-
idate the superiority of LIMIC in learning effective distance
metrics for multi-label classification.

The rest of this paper is organized as follows. Section 2
briefly reviews related works. Section 3 presents details of
the proposed LIMIC approach. Section 4 reports experimen-
tal results of comparative studies over benchmark multi-label
data sets. Section 5 concludes this paper.

2 Related Work
Multi-Label Classification. As a practical and challeng-
ing machine learning paradigm, multi-label classification
has been studied extensively in recent years [Zhang and
Zhou, 2014; Liu et al., 2021]. To tackle the challenge of
exponential-sized output space, label correlation exploitation
has been adopted as the most popular strategy. Generally
speaking, these approaches can be roughly grouped into three
categories, which differ in the order of label correlation con-
sidered. The order of label correlation can be considered
in a first-order manner by treating each label independently
[Boutell et al., 2004; Zhang and Zhou, 2007], a second-order
manner by exploiting pairwise interactions between labels
[Fürnkranz et al., 2008; Zhu et al., 2017], and a high-order
manner by exploiting relations among a subset or all labels
[Tsoumakas et al., 2010; Feng et al., 2019]. In addition to
label correlation exploitation, another effective strategy to fa-
cilitate multi-label classification is to manipulate the feature
space. Dimensionality reduction [Siblini et al., 2021] and fea-
ture selection [Pereira et al., 2018] over the original feature
space serve as the most common strategies for feature ma-
nipulation. Furthermore, there are other feature manipulation
strategies such as generating discriminative meta-level fea-
tures from original features [Canuto et al., 2016], aligning
latent space for features and labels [Yeh et al., 2017; Chen et

al., 2019a], and exploiting multi-view representation [Xing
et al., 2018] or label-specific features [Zhang and Wu, 2014;
Hang and Zhang, 2021; Hang et al., 2022] for multi-label
data.

Metric Learning. Different from the traditional feature
manipulation strategies mentioned above, metric learning has
been proposed as an alternative feature manipulation strat-
egy. The superiority of metric learning has been verified
on single-label data for improving similarity/distance-based
classification approaches [Niu et al., 2014; Ye et al., 2019;
Ye et al., 2020]. With supervision from various types
of side information like linkages and comparisons between
instances, metric learning resorts to a suitable similarity
or distance measure between instances [Xing et al., 2002;
Weinberger and Saul, 2009]. In metric learning, Maha-
lanobis metric is widely used to replace the Euclidean mea-
surement since it generalizes the Euclidean measurement
and can be optimized efficiently [Kulis and others, 2013;
Bellet et al., 2015]. Furthermore, Euclidean distance in the
transformed space can be viewed as Mahalanobis distance in
the original space equivalently. By leveraging such a metric,
similar instances tend to have small distances while dissimi-
lar ones are pushed away from each other. Besides, the met-
ric contributes to discovering semantic relationships between
instances effectively. Generally speaking, the single metric
characterizes the average of data [Weinberger et al., 2005;
Davis et al., 2007], which represents correlation patterns
making relationships between instances in accordance with
the provided side information.

Multi-Label Metric Learning. To the best of our knowl-
edge, there are three multi-label metric learning approaches
available, namely LM [Liu and Tsang, 2015], LJE [Gouk et
al., 2016], and COMMU [Sun and Zhang, 2021]. LM ex-
ploits a large margin formulation to construct a common met-
ric space, in which the similarity relationship in the input
space should be preserved in the output space. LJE aims
at learning a metric that can project instances into the fea-
ture space where the Euclidean distance provides an estima-
tion of the Jaccard distance between corresponding label vec-
tors. COMMU constructs a compositional metric by model-
ing structural interactions between feature and label space
to explore the integrated semantics of multiple labels. The
multi-label metric learning approaches above all focus on fus-
ing multi-semantic label information to construct a common
distance measurement across all the labels, and then learn
one single global metric to characterize the underlying se-
mantic similarity/dissimilarity. However, these strategies are
not consistent with the intrinsic properties of multi-label data
possessed of rich semantics and might lead to suboptimal per-
formance in learning distance metrics. In the next section,
the first attempt towards multi-semantics metric learning for
multi-label classification is introduced

3 The LIMIC Approach
3.1 Preliminaries
Let X = Rd denote the input space and Y = {l1, l2, . . . , lq}
denote the label space with q labels. A multi-label example



is denoted as (x, Y ), where x ∈ X is its feature vector and
Y ⊆ Y corresponds to the set of its relevant labels. Here, a
q-dimensional vector y = [y1, y2, . . . , yq] ∈ {0, 1}q can be
utilized to denote Y , where yp = 1 when lp ∈ Y and yp =
0 otherwise. Generally speaking, multi-label classification
aims to induce a multi-label prediction function h : X → 2Y

from a multi-label data set D = {(xi, Yi) | 1 ≤ i ≤ n}.
Given an unseen instance x′ ∈ X , its associated label set is
predicted as h(x′) ⊆ Y .

Meanwhile, let Sd+ denotes the space of d × d Positive
Semi-Definite (PSD) matrices. Given a metric M ∈ Sd+,
the (squared) Mahalanobis distance between pair (xi,xj) is
(xi−xj)

⊤M(xi−xj) = ⟨M,Aij⟩ = Tr(MAij). The outer
product of the pair difference is Aij = (xi−xj)(xi−xj)

⊤ ∈
Sd+. 1 By decomposing the metric into the inner product of
transformations L (L ∈ Rd×d′

, d′ ≤ d) as M = LL⊤, the
(square) Mahalanobis distance between two instances is equal
to their Euclidean distance in a projected space:

Dis2M(xi,xj) = (xi − xj)
⊤M(xi − xj)

⇐⇒ Dis2L(xi,xj) = (xi − xj)
⊤LL⊤(xi − xj) (1)

= ||L⊤(xi − xj)||22.

Generally speaking, there are several advantages in learn-
ing transformation L rather than metric M. Since there
is no PSD constraint on transformation L, no PSD projec-
tion step is required, which can accelerate the optimiza-
tion procedure. In addition, the transformation decomposi-
tion often leads to low-rank metrics, which can be advan-
tageous in many real-world applications, such as informa-
tion retrieval. It is also noteworthy that although the de-
composition leads to non-convex problems, satisfactory so-
lutions can be obtained as well [Weinberger and Saul, 2009;
Parameswaran and Weinberger, 2010; Ye et al., 2020]. Based
on the above consideration, we learn the transformation L
rather than the metric M in this paper.

3.2 Label-Specific Multi-Semantics Metric
Learning

For the p-th label lp, the set of positive training instances Pp

as well as the set of negative training instances Np are deter-
mined by considering the relevance of each example to lp:

Pp = {xi|(xi, Yi) ∈ D, lp ∈ Yi},
Np = {xi|(xi, Yi) ∈ D, lp /∈ Yi}.

(2)

The label-specific local side information w.r.t the label lp is
composed of all pairwise combinations between all the train-
ing examples as Tp = {(xi,xj , θ

p
ij)} where θpij ∈ {−1,+1}

indicates whether xi and xj have the same relevance w.r.t the
label lp. Concretely, θpij = 1 means the instances xi and xj

are similar because they are (or not) in possession of the label
lp simultaneously, i.e. (xi ∈ Pp ∧ xj ∈ Pp) ∨ (xi ∈ Np ∧
xj ∈ Np) and θpij equals -1 otherwise. Let (xi,xj) ∼ Tp
denote the enumeration of totally n(n − 1) pairs from the

1In the following descriptions, we do not differentiate ”metric”
and ”transformation”, which can be determined from the context.

label-specific local side information Tp. Let Tp denote the
number of pairs in Tp, and Tp = n(n− 1). In practice, there
is no need to compute all the tuples of side information, which
may suffer from a severe computational burden. A reasonable
amount of targets and imposters selected among the nearest
neighbors can retrench computation and facilitate the training
procedure, where targets indicate similar instances w.r.t. the
anchor and imposters otherwise [Weinberger and Saul, 2009;
Chen et al., 2019b; Ye et al., 2019; Ye et al., 2020].

To take both global and local semantic relationships into
consideration, we take advantage of the sum of global trans-
formation L0 and local bias Lp as the distance metric for the
label space of the p-th label lp. In this combination, the global
transformation represents a common view of semantic mea-
surement, while the local bias conducts adaptation for the
individuality of each label-specific semantic space. Specifi-
cally, given the global transformation L0 which construct the
commonality across all the labels, the p-th local label-specific
transformation Lp can be determined by solving the follow-
ing optimization problem:

min
Lp

1

Tp

∑
(xi,xj)∼Tp

ℓ(θpij(γ −Dis2L0+Lp
(xi,xj)))

+ λ||Lp||2F . (3)

Here, γ is a pre-defined non-negative threshold value and can
be different for similar and dissimilar pairs. ℓ(·) is a convex
and non-increasing loss function. If two instances xi,xj are
(or not) in possession of the label lp simultaneously, i.e. θpij =
1, then the loss equals 0 if their distance with Lp is smaller
than γ. On the other hand, when they are dissimilar (θpij =

−1), their distance should be larger than γ. By optimizing
Eq.(3), the learned transformation requires similar instances
to have small distances, while instances from different classes
are far away enough. Besides, λ is a non-negative weight
to balance the influence of the regularization term. In this
paper, the smooth hinge loss is used to instantiate ℓ(·), which
is defined as

ℓ(x) =


0, if x > 1

1
2 (x− 1)

2
, if 0 ≤ x ≤ 1

1
2 − x, if x < 0.

(4)

The smoothness property of this loss function will facilitate
the optimization process. Besides, ℓ(·) also keeps a small
margin, which further improves the generalization of Lp.

Based on the above modeling procedures for a single la-
bel, we can easily extend the objective function Eq.(3) to the
whole label space with q labels. The global transformation
L0 and q label-specific local biases L1,L2, . . ., and Lq can be
determined by solving the following optimization problem:

min
L0,L1,...,Lq

q∑
p=1

1

Tp

∑
(xi,xj)∼Tp

ℓ(θpij(γ −Dis2L0+Lp
(xi,xj)))

+ λ

q∑
p=0

||Lp||2F . (5)



3.3 Label Correlation Exploitation
Label co-occurrence is an essential semantic relationship in
multi-label classification, which has been proven to be effec-
tive prior information for label correlation exploitation [Ku-
rata et al., 2016; Hang and Zhang, 2021]. In this section, we
capitalize on the label co-occurrence information to establish
the relationship of label-specific metrics, where labels with
strong co-occurrence possess similar transformations.

Specifically, we construct a label relation graph based on
statistics of label co-occurrence. Let G = (V,E) denote such
a label relation graph, where V denotes the set of labels and
E denotes the set of edges between label pairs. The adja-
cency matrix W denotes the weights associated with each
edge, representing the strength of the co-occurrence relation-
ship between pairs of labels. We formulate the adjacency
matrix W as the symmetric conditional probability matrix.2
Each element in W is calculated as

wij =
1

2
[P (lj |li) + P (li|lj)], (6)

where P (lj |li) is the probability that label lj appears when
label li appears and the diagonal elements of adjacency ma-
trix W are set to 0. We calculate the adjacency matrix W
from the training set.

Intuitively, the stronger the correlation between two labels
li, lj is, the more similar the corresponding two label-specific
transformations Li,Lj are. On the contrary, if two labels li, lj
have a low frequency of co-occurrence, the corresponding la-
bel transformations Li,Lj should be dissimilar. Therefore,
the objective function for modeling the relation between dif-
ferent label-specific local transformations L1,L2, . . ., and Lq

can be formulated as

min
L1,L2,...,Lq

q∑
i=1

q∑
j=1

wij ||Li − Lj ||2F . (7)

By introducing the label correlation exploitation strategy
shown above into Eq.(5), the overall LIMIC framework can
be achieved as follows:

min
L0,L1,...,Lq

q∑
p=1

1

Tp

∑
(xi,xj)∼Tp

ℓ(θpij(γ −Dis2L0+Lp
(xi,xj)))

+ λ1

q∑
p=0

||Lp||2F + λ2

q∑
i=1

q∑
j=1

wij ||Li − Lj ||2F . (8)

3.4 Optimization Procedure
Let L denote the objective of the LIMIC framework in
Eq.(8). Following traditional implementation methods of
metric learning algorithms [de Vazelhes et al., 2020; Suárez et
al., 2020], we optimize the LIMIC framework with gradient-
based optimization strategies. The detailed procedures are
discussed as follows.

2Actually, the adjacency matrix W can be constructed in numer-
ous alternative ways or even can be implemented in a learnable for-
mulation. We attempt to focus on the label-specific multi-semantics
exploitation process and will leave it for further work.

Algorithm 1 The pseudo-code of LIMIC.
Input:
D: a multi-label training set {(xi, Yi) | 1 ≤ i ≤ n}

(X = Rd,Y = {l1, l2, . . . , lq} ,xi ∈ X , Yi ⊆ Y)
λ1, λ2: regularization parameters in Eq.(8)
Output:
L0,L1, . . . ,Lq: the learned global and label-specific local

transformations
Process:

1: Initialize L0 with I or employ multi-label metric learning
approaches;

2: Initialize L1,L2, . . . ,Lq with 0;
3: Compute adjacency matrix W according to Eq.(6);
4: for p = 1 to q do
5: Generate positive set Pp and negative set Np according

to Eq.(2);
6: Generate label-specific local side information tuples

Tp;
7: end for
8: repeat
9: Optimize Eq.(8) over L0,L2, . . . ,Lq with accelerated

gradient descent according to Eq.(9) and Eq.(10);
10: until convergence or maximum number of iterations be-

ing reached
11: Return L0,L1, . . . ,Lq

Initialization. For the global transformation L0, it can be
initialized in two ways. We can instantiate the global trans-
formation as an identity matrix, i.e. L0 = I, which equals
the Euclidean distance metric. It can also be initialized using
existing multi-label metric learning approaches such as LM.
In our experiments, we adopt the first strategy. Label-specific
local transformations L1,L2, . . ., and Lq can be initialized as
zero metrics since they are only complementary components
based on L0 for label-specific local distance metrics.
Gradient-based optimization. We utilize accelerated gra-
dient descent [Nesterov, 2003; Boyd et al., 2004] to opti-
mize the global transformation L0 and local transformations
L1,L2, . . ., and Lq simultaneously. Let δi,j,p = θpij(γ −
Dis2L0+Lp

(xi,xj) and the derivations of L w.r.t L0 and Lp

respectively are

∂L
∂L0

=

q∑
p=1

2

Tp

∑
(xi,xj)∼Tp

σi,j,pθ
p
ijAij(L0 + Lp)

+ 2λ1L0, (9)

∂L
∂Lp

=
2

Tp

∑
(xi,xj)∼Tp

σi,j,pθ
p
ijAij(L0 + Lp)

+2λ1Lp + 4λ2

q∑
i=1

wpi(Lp − Li), (10)

where σi,j,p is a piecewise function defined as follows:

σi,j,p =

{
0, if δi,j,p > 1
1− δi,j,p, if 0 ≤ δi,j,p ≤ 1
1, if δi,j,p < 0.

(11)



Dataset |S| dim(S) L(S) F (S) LCard(S) LDen(S) DL(S) PDL(S) Domain

CAL500 502 68 174 Numeric 26.044 0.150 502 1.000 Music1

emotions 593 72 6 Numeric 1.869 0.311 27 0.046 Music1

birds 645 260 19 Numeric 1.014 0.053 133 0.206 Audio1

genbase 662 1186 27 Nominal 1.252 0.046 32 0.048 Biology1

medical 978 1449 45 Nominal 1.245 0.028 94 0.096 Text1

image 2000 294 5 Numeric 1.236 0.247 20 0.010 Image2

scene 2407 294 6 Numeric 1.074 0.179 15 0.006 Image1

yeast 2417 103 14 Numeric 4.237 0.303 198 0.082 Biology1

1 http://mulan.sourceforge.net/datasets.html
2 http://palm.seu.edu.cn/zhangml/Resources.htm#data

Table 1: Characteristics of experimental data sets.

The complete procedure of LIMIC is summarized in Al-
gorithm 1. Firstly, global and label-specific local transfor-
mations L0,L1, . . ., and Lq are initialized (Step 1-2). After
that, the adjacency matrix W is computed for label correla-
tion exploitation (Step 3) and label-specific side information
is generated from the label semantic information (Step 4-7).
Finally, an accelerated gradient descent procedure is invoked
to optimize L0,L1, . . ., and Lq iteratively (Step 8-10).

After learning the global transformation L0 and multiple
label-specific local transformations L1,L2, . . ., and Lq with
the LIMIC approach, it is straightforward to calculate the dis-
tance between instances in the semantic space of each label
according to Eq.(1). Therefore, the associated label set of
an unseen instance can be predicted by resorting to classic
similarity/distance-based classification strategies such as the
k-nearest neighbor (KNN) algorithm.

4 Experiments
4.1 Experimental Setup
Data sets. In this paper, eight benchmark multi-label data
sets have been employed for comprehensive performance
evaluation. Table 1 summarizes the characteristics of each ex-
perimental data set S, including the number of examples |S|,
number of features dim(S), number of class labels L(S), fea-
ture type F (S), label cardinality LCard(S), i.e. the average
number of labels per instance, label density (label cardinality
over L(S)) LDen(S), number of distinct label sets DL(S),
and proportion of distinct label sets PDL(S).
Evaluation metrics. For performance evaluation, six
widely-used evaluation metrics are utilized for multi-label
classification, including Hamming loss, Ranking loss, Cov-
erage, Average precision, Macro-F1, and Macro-averaging
AUC. Detailed definitions of these metrics can be found in
[Zhang and Zhou, 2014].

4.2 Comparative Studies
To validate the effectiveness of the proposed LIMIC approach
in learning effective distance metrics for multi-label classi-
fication, three similarity/distance-based multi-label classifi-
cation strategies are introduced as subsequent classification
methods after learning the distance metric:

• BR-KNN [Boutell et al., 2004]: A classic multi-label
classification approach that decomposes the multi-label

classification into a set of binary KNN classification
tasks [parameter configuration: K = 10].

• ML-KNN [Zhang and Zhou, 2007]: A popular lazy
learning approach for multi-label classification with
Bayesian inference. [parameter configuration: K = 10].

• RELIAB-KNN [Zhang et al., 2021]: A KNN-based
multi-label classification approach that leverages the im-
plicit relative labeling-importance information with lo-
cal KNN reconstruction [parameter configuration: K =
10, ρ = 0.3, λ ∈ {10−3, 10−2, 10−1, 0, 1, 10}].

Given a similarity/distance-based multi-label classification
strategy A ∈ {BR-KNN, ML-KNN, RELIAB-KNN} and a
multi-label metric learning algorithm B, the coupling version
of them is denoted as A-B. The predictive performance of
A-LIMIC is compared with other multi-label metric learning
algorithms coupled with A to manifest whether the proposed
multi-label metric learning technique does learn effective dis-
tance metrics and improve the generalization performance for
multi-label classification.

In this paper, three well-established multi-label metric
learning algorithms are employed to instantiate B with sug-
gested configurations in respective literature:

• LM [Liu and Tsang, 2015]: A margin-based multi-label
metric learning approach that learns a common semantic
metric by employing a large margin formulation [param-
eter configuration: η = 0.4, C = 10].

• LJE [Gouk et al., 2016]: An integration-based multi-
label metric learning approach that employs Jaccard dis-
tance between label vectors to provide more fine-grained
side information [parameter configuration: t = 32, e = 5].

• COMMU [Sun and Zhang, 2021]: A composition-based
multi-label metric learning approach that learns a com-
positional metric by modeling structural interactions be-
tween feature and label space [parameter configuration:
α, θ ∈ {0.2, 0.4, . . . , 0.8} and C = 10].

For the proposed LIMIC approach, regularization parame-
ters λ1 and λ2 are searched in {10−3, 10−2, . . . , 103}. The
number of targets and imposters is fixed to 10 and γ in Eq.(8)
is set to 2 which is consistent with conventional metric learn-
ing approaches [Weinberger and Saul, 2009; Ye et al., 2020].
Ten-fold cross-validation is employed to evaluate the above
approaches on the 8 benchmark multi-label data sets.

http://mulan.sourceforge.net/datasets.html
http://palm.seu.edu.cn/zhangml/Resources.htm#data


Compared
Algorithms

Data Sets
CAL500 emotions birds genbase medical image scene yeast

Hamming Loss ↓
BR-KNN 0.145±0.003 0.263±0.023• 0.056±0.007• 0.003±0.001• 0.016±0.002• 0.170±0.017• 0.091±0.007• 0.198±0.006•
BR-KNN-LM 0.150±0.003• 0.270±0.019• 0.065±0.009• 0.001±0.001◦ 0.011±0.002◦ 0.175±0.016• 0.090±0.009 0.212±0.013•
BR-KNN-LJE 0.145±0.004 0.221±0.017• 0.055±0.006• 0.003±0.001• 0.021±0.003• 0.186±0.016• 0.108±0.009• 0.205±0.010•
BR-KNN-COMMU 0.145±0.003 0.263±0.023• 0.056±0.007• 0.003±0.001 0.016±0.002• 0.171±0.016• 0.091±0.007 0.198±0.006•
BR-KNN-LIMIC 0.145±0.005 0.207±0.012 0.050±0.006 0.003±0.001 0.012±0.002 0.160±0.017 0.087±0.011 0.192±0.012
ML-KNN 0.139±0.005 0.262±0.022• 0.054±0.006 0.005±0.002 0.016±0.002• 0.174±0.013• 0.085±0.009• 0.195±0.009•
ML-KNN-LM 0.139±0.004 0.254±0.017• 0.054±0.007 0.003±0.001◦ 0.013±0.002 0.176±0.014• 0.088±0.008• 0.205±0.012•
ML-KNN-LJE 0.138±0.005 0.224±0.015• 0.054±0.006 0.005±0.001 0.022±0.002• 0.186±0.016• 0.107±0.007• 0.204±0.010•
ML-KNN-COMMU 0.139±0.004 0.262±0.022• 0.054±0.006 0.005±0.002 0.015±0.002• 0.174±0.014• 0.085±0.009 0.195±0.009•
ML-KNN-LIMIC 0.138±0.004 0.209±0.017 0.052±0.006 0.004±0.001 0.013±0.002 0.161±0.019 0.083±0.006 0.191±0.011
RELIAB-KNN 0.118±0.007 0.238±0.030• 0.036±0.005• 0.002±0.002 0.013±0.004• 0.147±0.025• 0.065±0.015• 0.167±0.010•
RELIAB-KNN-LM 0.121±0.005• 0.245±0.028• 0.042±0.006• 0.001±0.001 0.010±0.003 0.153±0.023• 0.060±0.012• 0.175±0.009•
RELIAB-KNN-LJE 0.115±0.006◦ 0.213±0.026• 0.033±0.004• 0.002±0.002 0.014±0.003• 0.159±0.020• 0.078±0.013• 0.172±0.012•
RELIAB-KNN-COMMU 0.118±0.007 0.238±0.030• 0.036±0.005• 0.002±0.002 0.012±0.004• 0.148±0.025• 0.065±0.015• 0.167±0.010•
RELIAB-KNN-LIMIC 0.116±0.008 0.176±0.026 0.028±0.004 0.001±0.002 0.010±0.003 0.132±0.018 0.058±0.014 0.161±0.008

Ranking Loss ↓
BR-KNN 0.255±0.011 0.272±0.048• 0.477±0.051• 0.005±0.005 0.081±0.028• 0.185±0.020• 0.096±0.011• 0.184±0.013•
BR-KNN-LM 0.258±0.007 0.256±0.030• 0.491±0.045• 0.010±0.009• 0.106±0.037• 0.187±0.020 0.107±0.012 0.202±0.020•
BR-KNN-LJE 0.260±0.012 0.197±0.034• 0.455±0.055• 0.005±0.005 0.123±0.035• 0.203±0.021• 0.123±0.014• 0.195±0.012•
BR-KNN-COMMU 0.253±0.011 0.272±0.048• 0.477±0.052• 0.005±0.005 0.082±0.027 0.185±0.020 0.096±0.011 0.184±0.013
BR-KNN-LIMIC 0.251±0.015 0.172±0.035 0.391±0.039 0.003±0.005 0.078±0.024 0.177±0.026 0.100±0.015 0.181±0.017
ML-KNN 0.183±0.005• 0.258±0.038• 0.295±0.035• 0.004±0.004 0.032±0.009• 0.176±0.019 0.077±0.010• 0.167±0.013•
ML-KNN-LM 0.184±0.004 0.240±0.026• 0.298±0.047• 0.003±0.003 0.034±0.016 0.176±0.018• 0.084±0.010• 0.178±0.020•
ML-KNN-LJE 0.184±0.005• 0.196±0.028• 0.275±0.050• 0.002±0.003 0.056±0.012• 0.194±0.021• 0.111±0.012• 0.177±0.012•
ML-KNN-COMMU 0.182±0.004 0.258±0.038• 0.294±0.035• 0.004±0.004• 0.033±0.009 0.176±0.019• 0.077±0.010 0.167±0.014
ML-KNN-LIMIC 0.182±0.004 0.177±0.030 0.254±0.039 0.002±0.002 0.032±0.013 0.161±0.024 0.078±0.011 0.167±0.014
RELIAB-KNN 0.126±0.003• 0.167±0.032• 0.272±0.032• 0.003±0.002 0.028±0.011• 0.143±0.018• 0.061±0.008 0.139±0.016•
RELIAB-KNN-LM 0.122±0.004 0.145±0.027• 0.226±0.035 0.004±0.001• 0.032±0.012• 0.156±0.015• 0.068±0.007• 0.137±0.015
RELIAB-KNN-LJE 0.138±0.005• 0.122±0.030• 0.296±0.032• 0.003±0.002 0.035±0.016• 0.148±0.016• 0.072±0.006• 0.134±0.013
RELIAB-KNN-COMMU 0.126±0.003• 0.167±0.032• 0.272±0.034• 0.003±0.002 0.027±0.011 0.143±0.018• 0.061±0.008 0.139±0.016•
RELIAB-KNN-LIMIC 0.122±0.005 0.117±0.025 0.226±0.030 0.003±0.002 0.027±0.010 0.126±0.013 0.062±0.005 0.135±0.017

Coverage ↓
BR-KNN 0.840±0.025 0.378±0.032• 0.216±0.037• 0.015±0.008 0.075±0.025• 0.197±0.021• 0.087±0.011• 0.452±0.015•
BR-KNN-LM 0.833±0.015 0.364±0.032• 0.220±0.036• 0.022±0.010• 0.082±0.026• 0.194±0.021 0.095±0.009• 0.473±0.018•
BR-KNN-LJE 0.833±0.021 0.324±0.022• 0.202±0.039• 0.015±0.005 0.114±0.031• 0.209±0.020• 0.110±0.010• 0.461±0.017•
BR-KNN-COMMU 0.837±0.024 0.378±0.032• 0.216±0.037• 0.015±0.008 0.076±0.024 0.197±0.021• 0.087±0.011 0.453±0.015•
BR-KNN-LIMIC 0.838±0.025 0.300±0.027 0.176±0.024 0.012±0.005 0.066±0.019 0.184±0.026 0.085±0.011 0.443±0.016
ML-KNN 0.745±0.018 0.377±0.026 0.191±0.029• 0.016±0.008 0.047±0.011• 0.195±0.021• 0.078±0.010• 0.448±0.015•
ML-KNN-LM 0.755±0.018 0.360±0.033• 0.190±0.033• 0.015±0.006 0.049±0.019 0.194±0.020• 0.084±0.009 0.465±0.019•
ML-KNN-LJE 0.753±0.016 0.328±0.016 0.178±0.040• 0.014±0.006 0.075±0.013• 0.208±0.021• 0.107±0.011• 0.460±0.016•
ML-KNN-COMMU 0.746±0.016◦ 0.377±0.026• 0.191±0.029• 0.016±0.008 0.047±0.011 0.195±0.021• 0.078±0.010 0.448±0.015
ML-KNN-LIMIC 0.755±0.016 0.305±0.024 0.164±0.026 0.013±0.006 0.046±0.014 0.182±0.024 0.080±0.011 0.450±0.015
RELIAB-KNN 0.672±0.023• 0.304±0.022• 0.189±0.030• 0.015±0.008• 0.038±0.015• 0.164±0.023• 0.062±0.011 0.387±0.016•
RELIAB-KNN-LM 0.662±0.019 0.287±0.020• 0.168±0.028• 0.012±0.005 0.051±0.017• 0.158±0.022• 0.071±0.010• 0.394±0.012•
RELIAB-KNN-LJE 0.658±0.017◦ 0.253±0.026• 0.173±0.025• 0.013±0.006 0.047±0.012• 0.178±0.025• 0.069±0.012• 0.399±0.013•
RELIAB-KNN-COMMU 0.671±0.023• 0.304±0.022• 0.188±0.030• 0.015±0.008• 0.038±0.015• 0.164±0.023• 0.062±0.011 0.388±0.016•
RELIAB-KNN-LIMIC 0.667±0.020 0.229±0.023 0.144±0.031 0.012±0.007 0.029±0.013 0.147±0.022 0.062±0.013 0.365±0.015

Table 2: Predictive performance of each compared approach (mean±std) in terms of Hamming Loss, Ranking Loss, and Coverage. ↑ (↓)
indicates the larger (smaller) the value, the better the performance. The best results are highlighted in boldface. In addition, •/◦ indicates
whether A-LIMIC (A ∈ {BR-KNN, ML-KNN, RELIAB-KNN}) achieves significantly superior/inferior to the compared approach on each data
set in terms of different evaluation metrics (pairwise t-test at 0.05 significance level).

Due to page limit, Table 2 reports detailed experimental re-
sults in terms of Hamming loss, Ranking loss, and Coverage.
The results on other metrics can be found in the supplemen-
tary material. Our proposed LIMIC approach coupled with
A ∈ {BR-KNN, ML-KNN, RELIAB-KNN} are compared with
other coupling versions of multi-label metric learning ap-
proaches B ∈ {LM, LJE, COMMU} respectively. Meanwhile,
the original version of BR-KNN, ML-KNN, and RELIAB-KNN
which adopt the Euclidean metric are also included as com-

pared approaches. For each evaluation, ”↓” indicates ”the
smaller the better” while ”↑” indicates ”the larger the better”.
The best performance among compared algorithms is shown
in boldface. Furthermore, pairwise t-test at 0.05 significance
level is conducted to demonstrate whether the performance
difference between A-LIMIC and A-B is significant statisti-
cally, where the resulting win/tie/loss counts are reported in
the supplementary material. Based on the experimental re-
sults reported in Table 2, it is impressive to observe that:



• For similarity/distance-based multi-label classification
strategies A ∈ {BR-KNN, ML-KNN, RELIAB-KNN},
the generalization performance has been greatly im-
proved after coupling multi-label metric learning algo-
rithms. Especially, BR-KNN-LIMIC, ML-KNN-LIMIC,
and RELIAB-KNN-LIMIC achieve better performance
than BR-KNN, ML-KNN, RELIAB-KNN in 89.6%,
81.3% and 87.5% cases respectively. The results vali-
date the effectiveness of metric learning for improving
similarity/distance-based classification methods.

• Across all evaluation metrics, BR-KNN-LIMIC, ML-
KNN-LIMIC, and RELIAB-KNN-LIMIC achieve the best
performance in 87.5%, 81.3%, 83.3% respectively over
all the multi-label data sets. Meanwhile, BR-KNN-
LIMIC (ML-KNN-LIMIC, RELIAB-KNN-LIMIC) signif-
icantly outperforms corresponding coupled versions
of other multi-label metric learning algorithms B ∈
{LM, LJE, COMMU} in 70.8% (62.5%, 83.3%), 79.2%
(72.9%, 87.5%), and 47.9% (54.2%, 79.2%) cases re-
spectively. The superior performance of LIMIC provides
persuasive evidence for the effectiveness of the label-
specific multi-semantics metric exploitation strategy in
learning distance metrics for multi-label classification.

4.3 Further Analysis
Ablation study. In this subsection, the ablation study on
several variants of LIMIC is further conducted to analyze the
effectiveness of each constituent part. To validate the use-
fulness of global metric consideration, LIMIC-NG is imple-
mented by learning label-specific local metrics directly. In
addition, we implement a variant named LIMIC-NL by re-
moving the label correlation regularization in Eq.(8). Fur-
thermore, LIMIC-NGL is implemented by ignoring both the
global metric and label correlation regularization. Table 3
reports detailed experimental results coupled with BR-KNN
in terms of Average precision. Pairwise t-test results can be
found in the supplementary material. Based on these results,
the significant usefulness of global metric consideration and
label-correlation exploitation procedures can be validated.

Sensitivity analysis. As shown in Algorithm 1, λ1 and λ2

serve as hyperparameters for LIMIC which indicate the rela-
tive importance of the semantic metric and label correlation
exploitation parts. To investigate the performance sensitivity
of LIMIC approach, Figure 1 gives an illustrative example of
how the performance of BR-KNN-LIMIC changes with vary-
ing configurations of the hyperparameters λ1 and λ2 (data set:
CAL500 and birds; evaluation metric: Average precision). As
shown in Figure 1, the performance of BR-KNN-LIMIC is rel-
atively stable as λ1 and λ2 change within a reasonable range,
which demonstrates the stability of our approach.

Complexity analysis. Let k, kt, ki, and t denote the num-
ber of selected neighbors, number of targets, number of im-
posters, and dimension of projection. The training complex-
ity of one iteration for LM, LJE, COMMU, and LIMIC are
O(q3 + kndq2), O(tn2 + tdnlog(n)), O((d + q2)nktki),
and O(q(dn2 + nd2 + d3)). For LIMIC, the main computa-
tion lies in the gradient calculation and update for the global
metric and label-specific local metrics. It is noteworthy that

Data sets
Average precision ↑

LIMIC LIMIC-NG LIMIC-NL LIMIC-NGL

CAL500 0.464±0.010 0.464±0.010 0.462±0.011• 0.454±0.014•
emotions 0.800±0.040 0.753±0.040• 0.792±0.029• 0.748±0.031•
birds 0.441±0.065 0.436±0.062• 0.441±0.066• 0.436±0.062•
genbase 0.996±0.005 0.995±0.005• 0.996±0.005 0.995±0.005•
medical 0.881±0.024 0.871±0.031• 0.873±0.020• 0.868±0.026•
image 0.807±0.024 0.782±0.021• 0.793±0.025• 0.718±0.024•
scene 0.857±0.019 0.817±0.013• 0.856±0.017• 0.776±0.018•
yeast 0.767±0.022 0.760±0.018• 0.767±0.023 0.760±0.022•

Table 3: Predictive performance of LIMIC and its variants coupled
with BR-KNN (mean±std) in terms of Average precision. In addi-
tion, •/◦ indicates whether BR-KNN-LIMIC achieves significantly
superior/inferior to the variants on each data set in terms of Average
precision (pairwise t-test at 0.05 significance level).

(a) CAL500 (b) birds

Figure 1: Performance of BR-KNN-LIMIC with varying parameter
configurations in terms of Average precision.

LIMIC learns multiple metrics of which the number equals
q + 1, which may be slow when applied to date sets with
a large number of labels. This is inevitable if considering
label-specific metrics. We will leave efficiency improvement
for future work.

5 Conclusion
In this paper, the first attempt towards multi-semantics met-
ric learning for multi-label classification is investigated. Dif-
ferent from existing single-metric exploitation strategies, we
propose a novel approach LIMIC which exploits multiple
latent label-specific semantics for multi-label classification.
LIMIC learns one global and multiple label-specific local
metrics simultaneously to characterize label-specific seman-
tic space, in which similar intra-class instances are closer
while inter-class distances are far away. Comprehensive ex-
periments demonstrate that LIMIC outperforms other well-
established multi-label metric learning approaches in learning
effective distance metrics for multi-label classification. How-
ever, LIMIC learns #labels+1 metrics, which could be hard
to generalize to extreme multi-label learning. It is inevitable
if considering label-specific metrics. It is interesting to in-
vestigate towards this dilemma to achieve better performance
and tolerable scalability for multi-label metric learning. Fur-
thermore, it is promising to extend our approach to weakly
supervised and open-environment scenarios [Zhou, 2022].
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